Recent review on selective histone deacetylase inhibitors in cancer therapy

Aya I. Abd El-hameed 1,2,*, Mamdouh F. A. Mohamed 2, Eman A. M. Beshr 1

1 Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
* Correspondence: Email: mamdouh.fawzy3@yahoo.com, mamdouh.fawzi@pharm.sohag.edu.eg, Tel.: +201094636467

ARTICLE INFO

Article history:
Received 24 October 2023
Received in revised form
11 December 2023
Accepted 11 December 2023
Available online 1 January 2024

Keywords: Histone deacetylase; Histone deacetylase inhibitors; Selectivity; Anticancer; Selective HADC inhibitors.

© 2024 by the authors; licensee Port Said University, Egypt. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

ABSTRACT

Cancer is the most serious disease afflicting humans and a primary cause of death on a global scale. Chemotherapy continues to be one of the most essential cancer treatments, in addition to surgery and radiotherapy. Recently, the use of targeted anticancer medications as an approach for optimizing antitumor therapy has been advocated. One of the most well-established cancer targets is histone deacetylases (HDACs). HDAC inhibitors (HDACis) have evolved as one of the most effective anticancer medications due to their capacity to destroy cancer cells aggressively via alteration of the chromatin structure or inhibition of their activity. The discovery of selective HDACs has recently garnered considerable interest for their diverse biological activities and potential therapeutic agents with fewer adverse effects than approved pan inhibitors. This review provides an overview of isoform- and class-selective HDAC inhibitors, including the IC50 values and biological effects on various types of cancer.

1. Introduction

Histone deacetylases (HDACs) are NAD+ or Zn2+-dependent enzymes in procaryotes and eucaryotes that regulate the cellular proteins' acetylation condition. Eighteen mammalian HDACs are categorized into four classes based on their similarity to yeast deacetylases and their discovery time: class I compromises of HDAC1, 2, 3 & 8. Class II is further subdivided into IIa, which involves HDAC4, 5, 7, 9, and IIb, which involves HDAC6, 10, and class IV has just HDAC11, which has structural similarities to classes I and II [1, 2]. In class III SIRT1-7, NAD+ is used as a cofactor, whereas in classes I, II, and IV, Zn2+ is used as a cofactor [3, 4].

HDACs are crucial epigenetic enzymes that regulate different elements of life, such as protein activities and gene expression. It is essential to highlight that increased HDAC expression was detected in several cancer types [5].
For example, pancreatic and colorectal malignancies are related to transcriptional HDAC1 overexpression. In addition, both colon and lung cancer exhibited HDAC3 overexpression, whereas HDAC8 was shown to be overexpressed in neuroblastoma [6, 7]. HDACs can also deacetylate non-histone proteins involved in cancer progression and development, in addition to their ability to eliminate the histone acetyl groups. Intriguingly, the primary biological roles of HDACs include encouraging tumor cell angiogenesis, migration, proliferation, and invasion [8]. Consequently, it is hypothesized that HDACis offers significant therapeutic promise for human malignancies [9, 10].

Most HDACis have the common pharmacophore models consisting of 3 moieties: a capping moiety, a zinc-binding group (ZBG), and a linker moiety connecting the two portions [11]. The cap group typically includes a heteroaromatic hydrophobic moiety or aromatic character, which promotes the interaction of amino acids at the enzyme rim and is principally responsible for the selectivity of HDAC isoforms [12]. As ZBG works as a chelating agent for Zn$^{2+}$ at the HDAC active site, its modification can impact the inhibitors’ efficiency [13].

1. Pan HDACis

HDACis can be grouped into four major classes based on the ZBG chemical structures: aliphatic acid, benzamides, cyclic peptides & hydroxamates [12, 14]. Hydroxamate-based HDACs are the most studied and potent ones [15]. However, most hydroxamates are pan HDACis utilized for peripheral T-cell lymphoma (PTCL) in individuals with chronic, progressive, or recurrent disease during or after systemic treatments [16].

The FDA had approved six HDACis medications after research efforts in recent years, involving vorinostat (SAHA), romidepsin, belinostat, panobinostat, chidamide and pracinostat [10, 17]. Monotherapy for solid malignancies is still subjected to certain constraints despite its efficacy against cutaneous and PTCLs and recurrent multiple myeloma. On the other hand, significant adverse effects, such as deep vein thrombosis, leukopenia, pulmonary embolism, anemia, and thrombocytopenia, have been recorded for these medications, which increases concerns about their therapeutic utilization [18].

Due to the association between specific HDAC isoforms and various cancer types, cellular localization of particular HDACs & diverse tissue distribution and researchers postulated that isoform-selective HDACis could have a greater therapeutic index & fewer side effects [19].

2. Selective HDACis

Specific HDAC isoforms were discovered to be related to definite diseases, such as neurodegenerative disorders and malignancies. Selective HDACis are highly required to understand various HDAC isoforms' biological functions better and, more crucially, for developing medicines with more valuable therapeutic index and fewer adverse effects than pan-inhibitors [20, 21].

2.1 Class I Selective HDACis

Class I HDACs' overexpression has been seen in a variety of cancer tissues, including lung, prostate, breast,
stomach, esophagus, and colon. They are essential for managing the cell proliferation & regulation [22].

2.1.1 HDAC (1-3)

Elevated HDACs 1-3 expression is associated with reduced patient survival in gastric cancer and nodal tumor spread [6, 23]. On the other hand, HDACs 1-3 are upregulated in human hepatocellular carcinoma (HCCs) [24]. In addition, some colorectal malignancies exhibited high expression of these isozymes [25]. In hormone receptor-negative & poorly differentiated breast cancer, HDAC 2 and 3 are highly expressed, and in hormone receptor-positive breast cancer, HDAC1 is strongly expressed [26, 27]. Moreover, HDAC2 is an independent prognostic factor for prostate cancer, while HDACs 1-3 are highly expressed in prostate carcinomas [28]. Furumai et al. reported that Romidipsin potently inhibits HDAC1 and HDAC2 in contrast to HDAC4 and HDAC6 (HDAC1 IC₅₀ = 0.036 μM, HDAC2 IC₅₀ = 0.074 μM, HDAC4 IC₅₀ = 0.51 μM, HDAC6 IC₅₀ = 14 μM) [29]. Additionally, it suppresses HDAC1 more effectively under reducing conditions (HDAC1 IC₅₀ = 1 nM), indicating that the free thiol analog (compound 1) liberation as the active species within the cellular environment is a result of the molecule’s disulfide bond reduction [30, 31]. Compound 2 is categorized under miscellaneous compounds, which do not fit the standard modular structural mode; compound 2 suppresses HDAC1 preferentially over HDAC3 and HDAC8 (HDAC1 IC₅₀ = 1.5 μM; HDAC3 IC₅₀ > 100 μM; HDAC8 IC₅₀ > 100 μM).

It stimulates the dose-dependent elevations in histone H4 acetylation in human colon carcinoma cell line SW620, and the zinc-binding group’s absence makes this compound’s chemical structure unique. Additionally, it selectively inhibits HDAC1 as it may bind to the HDAC1 allosteric site [32].

Regarding compound 3, Suzuki and co-workers identified it as an HDAC inhibitor amongst benzamide-based synthetic compounds [33]. It can selectively inhibit HDAC1 (IC₅₀ = 181 nM) (102), whereas another group reported that it can inhibit HDAC1 and HDAC3 with identical potency [34]. It can bind to the active sites of HDAC1 & 3 more strongly than that of HDAC8 [34]. Moreover, it does not affect HDAC6 in cells, as it increases the histone acetylation but not tubulin acetylation [35].

Compound 4 exhibited significant activity against human class I HDACs (HDAC1 IC₅₀ = 0.7 nM), compound 4 (IC₅₀ = 0.02-0.1 μM) has less toxicity against normal cells and was 25 times more effective in cytotoxicity against five human cancer cell lines than compound 5 (IC₅₀ = 0.3-1.5 μM), the IC₅₀ of compound 5 against HDAC1 is reported as 25 nM [36].

Reported HDACi derivatives were developed and exhibited good to excellent HDAC inhibitory activity. HDAC1, HDAC2, and HDAC8 are suppressed by compound 6 with its indazole ring and a six-carbon aliphatic linker (IC₅₀ = 2.7, 4.2, and 3.6 nM). It exhibits a more effective antiproliferative effect against HeLa cells & HCT-116 (IC₅₀ = 2.1 and 4.4 μM) than the positive control SAHA (IC₅₀ = 4.9 and 5.0 μM). Western blot examination indicated compound 6 dramatically upregulated histone H3 and acetylated α-tubulin levels [37].

Compound 7 with a five-carbon aliphatic linker suppresses HDAC1-3 (IC₅₀ = 35 nM) and HDAC6 (IC₅₀ = 25 nM), leading to a dose-dependent upregulation of acetylated histone & α-tubulin. Compound 7 displayed significant antiproliferative effects against numerous solid tumor cells, as breast cancer cells resistant to SAHA. It may also reduce the STAT3 activation by HDAC inhibition in some breast cancer cells, limiting the pro-survival protein quantities in tumor cells and improving the antitumor activity mediated by STAT3 signaling in vivo [38].
Among a variety of developed HDACis, compound 11 with hydroxamic acid as ZBG demonstrated potent antiproliferative activity against HeLa cells (IC\textsubscript{50} = 0.23 μM) and full inhibitory activity against HDAC1 (IC\textsubscript{50} = 0.19 μM) [45].

Wu et al. developed several HDACis. Compound 12 with a six-carbon aliphatic linker exhibited significant inhibitory effects against HDAC1 (IC\textsubscript{50} = 45 nM) & HDAC6 (IC\textsubscript{50} = 17 nM) in cell-free assays and induced intracellular inhibition of STAT3 pathway & HDACs; this compound is cytotoxic to MDA-MB-231, a TNBC cell line that is highly STAT3-dependent [46].

2.1.1.2 HDAC2-selective Inhibitors

Medulloblastoma with a poor prognosis is characterized by HDAC2 overexpression [47]. In addition, HDAC2 inactivation inhibits tumor cell proliferation \textit{in vitro} and \textit{in vivo}. Abundant HDAC2 expression is reported in lung cancer tissues [48]. Additionally, pancreatic ductal adenocarcinoma (PDAC) had a significant HDAC2 expression [49]. In sporadic colorectal malignancies, mutations in HDAC2 result in the decrease of protein expression [50]. In addition, HDAC2 is strongly expressed in nodal lymphomas, which have a poorer survival rate [51]. Compound 13 is among a published series of HDAC2-selective inhibitors with a tropolone scaffold that exhibited significant HDAC2 selectivity (0.06 nM). The antiproliferation assay can also potently suppress the growth of several tumor cell lines; it inhibits the growth of T-cell lymphocyte cell lines [52].

Avelar et al. revealed enhanced inhibitors with solid activity against bortezomb-resistant leukemia cells and cisplatin-resistant head-and-neck malignant cells. A substantial inhibitory effect on HDAC2 (IC\textsubscript{50} = 92 nM) and HDAC6 (IC\textsubscript{50} = 25 nM), but only moderate impacts on HDAC8 (IC\textsubscript{50} = 9.7 μM) and negligible effects on HDAC4 (IC\textsubscript{50} = 100 μM) is attained by compound 14, which was found to be a potent inhibitor of HDACs whole cell assays.
Asfaha et al. synthesized compound 15, which was the most effective among the synthesized compounds. The histone H3 and α-tubulin acetylation in Cal27CisR & Cal27 verified its dual inhibitory impact on HDAC2 (IC$_{50}$ = 60 nM) and HDAC6 (IC$_{50}$ = 30 nM) [54].

2.1.1.3 HDAC3-selective Inhibitors

DLBCL exhibited HDAC3 overexpression [55]. High HDAC3 expression is also associated with enhanced stage IV metastatic melanoma survival [56]. A series of HDAC3 selective inhibitors was designed by Suzuki et al., who revealed that compound 16 with submicromolar IC$_{50}$ (260 nM) is an effective HDAC3 inhibitor. However, even at 100 μM, it did not inhibit other HDAC isozymes; it induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells [57].

The linker-less benzamide-based lead compound 17 demonstrated modest selective HDAC3 inhibition (IC$_{50}$ = 0.56 μM) over class I HDACs, compound 17 induced apoptotic cell death in Annexin-V/FITC-PI assay and caused cell cycle arrest at G2/M phase of the cell cycle in B16F10 cells [58].

A set of compounds with a 2-substituted benzamide ZBG that appeared to target HDAC3 selectively was designed. Compound 18 is a selective and potent HDAC3 inhibitor (IC$_{50}$ = 30 nM and more than 300-fold selectivity over other HDAC). Notably, its analog, compound 19, was revealed to maintain HDAC's efficacy (HDAC3 IC$_{50}$ = 7.6 nM).

This series of HDAC3 selective inhibitors served as tool compounds for investigating the minimal set of HDAC isoforms that must be inhibited for the HIV latency activation in a Jurkat 2C4 cell model [59].

2.1.2 HDAC8 Selective Inhibitors

In several malignancies such as breast, lung, colon, pancreatic, neuroblastoma, and myeloid leukemia, HDAC8 overexpression is observed [60]. In addition, hepatocellular carcinoma and breast cancer exhibit a pronounced upregulation of HDAC8 [61]. In neuroblastoma, high levels of this isozyme correspond with advanced disease stage and poor prognosis [62, 63].

Compound 20 was reported as a potent HDAC8-specific inhibitor (IC$_{50}$ = 0.01 μM) with > 200-fold selectivity over other HDAC isoforms. It contains an indole moiety that triggers apoptosis in tumor cells generated from T cells and does not increase histone or tubulin acetylation. Its selectivity for the HDAC8 enzyme may be explained by the conjugation of 4-methoxybenzyl to the enzyme sub-pocket of the HDAC8; it also induced caspase-dependent apoptosis in cell lines derived from T-cell lymphomas or leukemias, but not in other hematopoietic or solid tumor lines [64].

In enzymatic studies against HDAC2, HDAC3 & HDAC8, the synthesized compounds 21, 22 & 23 demonstrated considerable selectivity towards isoform 8 (IC$_{50}$ = 0.052, 0.029 and 0.023 μM, respectively). The compounds’ activity/selectivity profiles were identical despite their cap groups exhibiting distinct stiffness and bulkiness.
Compounds 24 and 25 were reported as effective HDAC8 inhibitors (IC₅₀ = 0.070 and 0.10 μM, respectively). The phenyl dimethyl group of compounds 24 conjugates to a distinct HDAC8 hydrophobic pocket, and for its potency and selectivity, the orientation of the phenyl dimethyl and hydroxamate moieties (fixed by the triazole moiety) is crucial; the inhibitors caused selective acetylation of cohesin in cells and exerted growth-inhibitory effects on T-cell lymphoma and neuroblastoma cells (GI₅₀ = 3–80 μM) [65]. Heimburg and co-workers developed compounds 26, 27, and 28 with enhanced inhibitory potency against HDAC8 with (IC₅₀ = 0.04, 0.017 and 0.03 μM, respectively). They inhibit tumorigenesis as they were shown to be efficient in the up-regulation of the neurofilament-positive neurite-like structures & differentiation marker genes outgrowth; the cytotoxicity of the compounds was tested against a human embryonic kidney cell line (HEK293) at a concentration of 50 μM, it showed only relatively weak cytotoxicity at the used concentration [66]. Compound 29 is among the most potent and selective HDAC8 inhibitors (IC₅₀ = 0.0008 μM). SAR of designated compounds illustrated that small hydrophobic groups, such as cyclopropane, were beneficial and afforded more significant inhibition [67].

Compounds 30 and 31 are among a unique family of HDAC8 inhibitors; they displayed the highest HDAC8 efficacy and selectivity over HDAC1 at 82 and 55 nM, 330 and 135-fold selectivity over other class I isoforms. Their cytotoxicity was assessed in neuroblastoma cell lines, and their selectivity was validated in SH-SY5Y cells, where neither compound increased α-tubulin & histone H3 acetylation [68].

Compound 32 (HDAC8 IC₅₀ = 27.2 nM) was designed with antiproliferative activities against multiple human lung cancer cell lines (CL1-5, H1299 & A549); it demonstrated comparable cytotoxicity against human lung CL1-5 cells to that of SAHA, but no significant cytotoxicity against normal IMR-90 cells [69].

Hrubec and co-workers designed a six-membered class of compounds. Enzymatic assay screening discovered powerful HDAC8is, compounds 33 (IC₅₀ =
0.7 μM and 34 (IC\textsubscript{50} = 0.3 μM) are > 100-fold selective for HDAC8 compared to their isoforms [70].

A set of N-thiomethyl-azetidinones containing compounds that are HDAC8 selective inhibitors in the micromolar range were developed. Compound 35 had moderate inhibitory activity (IC\textsubscript{50} = 4.53 μM) in comparison to other HDACs (IC\textsubscript{50} > 1000 μM). As revealed by computational analysis, this compound has a low inhibitory effect because the carbonyl of azetidine-2-one can chelate zinc in a monodentate manner, while the Sulphur atom is included in the interaction with HDAC8 Trp141 [71].

Compound 36 with an oxadiazole moiety inhibited the HDAC8 expression but no other class I HDACs; it inhibited the growth of MDA-MB-231 and MCF7 breast cancer cells through p21 induction and CDK1 proteins inhibition, with a lower IC\textsubscript{50} of 230 and 1000 nM, respectively [72, 73]. Structurally selective HDAC8 compounds containing N-substituted thiazolidinediones moiety were synthesized.

The non-hydroxamate compound 37 was the most potent HDAC8 inhibitor (IC\textsubscript{50} = 9.3 μM). Moreover, it was much less cytotoxic to human fibroblasts (HS27) (CC\textsubscript{50} = 105.0 μM) and normal WBCs (CC\textsubscript{50} = 104.2 μM) [74].

A unique family of non-hydroxamate derivatives of 5-naphthylidene-2,4-thiazolidinedione was designed. Compounds 38 and 39 were identified as the most effective and selective HDAC8 inhibitors, with IC\textsubscript{50} values of 2.7 and 6.3 μM, respectively [75].

A novel series of N-hydroxy-3-sulfamoylbenzamide-based HDAC8 selective inhibitors were synthesized. Compounds 40, 41 & 42 with nanomolar IC\textsubscript{50} values of 50, 80, and 60 nM demonstrated efficient HDAC8 inhibition. They additionally exhibited specific antiproliferative effects on two T-cell leukemia cell lines [76].

Neelarapu et al. developed efficient pyrazole-based HDAC8 inhibitors; compound 43 was the most effective amongst these agents and displayed neuroprotective and antiproliferative effects at micromolar levels via nuclear HDAC8 inhibition and was eight-fold more active towards HDAC8 than HDAC3 (IC\textsubscript{50} = 17 nM) [77].

A variety of compounds that bind specifically to HDAC8 catalytic channels were developed. Compound 44 with a benzanilide scaffold demonstrated up to 410-fold HDAC8 selectivity over other HDACs and high in vitro HDAC8 activity (IC\textsubscript{50} = 23 nM) [78].

Compound 45 was identified as a highly selective HDAC8 non-hydroxamate inhibitor that lacks classic zinc binding groups but binds to the enzyme’s active site (IC\textsubscript{50} = 0.011 μM). Although, it degrades rapidly in the presence of glutathione (GSH) [79]. The modified compound 46 exhibited significant selectivity for HDAC8 (IC\textsubscript{50} = 0.26 μM) compared to HDACs and double-digit nanomolar potency, colony assay using SK-N-BE(2) C neuroblastoma tumor cells and treating them with different concentrations of indicated compounds showed great antiproliferative activity [80].
2.2 Class II selective HDACIs

2.2.1 Class IIa selective HDACIs

2.2.1.1 HDAC4 Selective Inhibitors

HDAC4 is overexpressed in gastric carcinoma cells relative to surrounding normal tissues [81]. Its high expression is related to T-cell adult acute lymphoblastic leukemia (ALL) and elevated initial leukocyte count [82].

Compound 47, an orally active antiangiogenic medication in phase III clinical trials for castration-resistant prostate cancer treatment, was identified as a negative allosteric HDAC4 modulator (IC\textsubscript{50} = 30 nM) that interacts with the carboxamide moiety at the HDAC4’ ZBG [83].

Compound 48 is amongst a set of 5-(trifluoroacetyl) thiophene-2-carboxamides which was ten times more selective for HDAC4 & 6 than class I HDACs and was identified as a moderate HDAC4 inhibitor (IC\textsubscript{50} = 320 nM) [84].

Tessier et al. identified a diphenylmethylen hydroxamic acids group in the sub-micromolar range on HDAC4 (IC\textsubscript{50} = 0.75 µM), HDAC5 (IC\textsubscript{50} = 0.14 µM) & HDAC7 (IC\textsubscript{50} = 0.39 µM), compound 49 showed potent inhibitory activities. Compound 50, an analog of rigidified oxygen, exhibited comparable inhibitory effects on HDAC4 (IC\textsubscript{50} = 0.25 µM), HDAC5 (IC\textsubscript{50} = 0.11 µM), & notably higher selectivity for HDAC7 (IC\textsubscript{50} = 0.05 µM) [85].

Compound 51 was identified as a potent 1,2,4-oxadiazole-based HDAC4 inhibitor with IC\textsubscript{50} = 0.04 µM; it is used in preclinical models of Huntington’s disease [86].

Ontoria and co-workers designed a thiophene-based HDAC4 inhibitor, compound 52 showed potent HDAC4 inhibitory activity (IC\textsubscript{50} = 310 nM) with enhanced stability in HCT116 cancer cells and 40-fold selectivity over HDAC1 [87].

Potent non-hydroxamate compounds exhibiting HDAC4 inhibitory activities were designed. Compound 53 (IC\textsubscript{50}=4.2±1 µM), 54 (IC\textsubscript{50} = 0.75±0.03 µM), 55 (IC\textsubscript{50} = 4.9±0.5 µM) and 56 (IC\textsubscript{50} = 2.3±0.5 µM). In addition, compounds 54 & 55 were demonstrated to be the most potent antiproliferative agents in breast cancer MDA-MB-231 cells and lymphoblastic leukemia (CCRF-CEM) [88].

2.2.1.2. HDAC5 selective inhibitors

HDAC5 expression is accompanied by a poor outcome in lung cancer and frequently diminished in tumors such as acute myeloid leukemia (AML) and colon cancer [89].
It is upregulated in medulloblastomas with a high risk of mortality, and its expression is associated with a poor outcome [90]. In vitro & in vivo, HDAC5 knockdown decreases tumor cell proliferation and promotes apoptosis; HDAC5 is upregulated in HCC tissues [91].

Compound 57 was reported, which exhibited comparable effects to vorinostat on suppression of cellular HDACs in a pan-HDAC assay but exhibited more excellent cytotoxic effects against the human cancer cell lines MDA-MB231, Kyse510, Cal27 & A2780. In the nanomolar range, it inhibits HDAC4 (IC50 = 11.9 nM) & HDAC5 (IC50 = 4.22 nM), whereas TSA & vorinostat suppress HDAC4 & HDAC5 in a higher micromolar range [92].

Nebbioso and co-workers synthesized compound 58, which impairs myogenesis. In vivo, it appears to suppress HDAC in a tissue-selective manner. In contrast, it reduces HDAC4 and HDAC5 activities in the heart and skeletal muscle without affecting HDAC3 activity [93].

2.2.1.3. HDAC7 selective inhibitors

HDAC7 overexpression is related to a bad prognosis in pancreatic cancer, whereas HDAC7 knockdown suppresses the development of tumor cells [94]. Additionally, human colorectal cancer exhibited HDAC7 upregulation [95]. Compounds 59, 60, and 61 were investigated using pharmacophoric modeling tools. Four unique chemical properties may be responsible for HDAC7’s inhibitory effect (IC50 = 0.311, 0.355, and 0.360 μM, respectively), according to a docking analysis of the active site of the HDAC7 enzyme. These are hydrophobic ligands, hydrogen bond donors, hydrogen bond acceptors & aromatic ring [96]. Wang and co-workers reported some HDAC7 inhibitors. Among these, compound 62 (IC50 = 12 nM) and compound 63 (IC50 = 20 nM) in a sub-nanomolar range displayed the most potent inhibitory activities on HDAC7 in neuroblastoma cell lines [97].

A unique compound with a non-classical chelating zinc binding group, trifluoro-methylisoxadiazole (TFMO), was reported, and compound 64 exhibited good selectivity towards HDAC7 (IC50 = 0.036 μM) [98].

2.2.2 Class IIb Selective Inhibitors

2.2.2.1 HDAC6 Selective Inhibitors

HDAC6 knockdown enhances HCC angiogenesis [99], and its high expression is reported in pancreatic cancer tissues, DLBCL, and PTCL [100]. Also, its overexpression is found in AML [101]. A high HDAC6 level is associated with a favorable prognosis in DLBCL but a poor prognosis in PTCL [102].

Compound 65 was the first reported HDAC6 inhibitor (IC50 = 4 nM). It had distinct effects on HDAC1, 6, & 8, primarily derivatives of the surface variation between class I and II HDACs. However, its increased lipophilicity rendered it more valuable as a chemical agent than a potential medication [103].

Compound 66 is the first selective HDAC6 inhibitor to enter clinical trials (IC50 = 5 nM). Its low doses in combination with lenalidomide or bortezomib can elicit synergistic therapeutic results in multiple myeloma treatment [104].
An aryl-substituted isoxazole-containing powerful HDACi was reported. Compound 67 exhibited an excellent 2 μM potency against HDAC6. The carbonyl group of the Boc group may interact with His499, which may be essential for placing the cap residue on the protein surface [105].

Using quinazoline as the cap area, selective HDAC6 inhibitors were reported. Keeping the HDAC6 selectivity and activity requires a hydroxamic acid on C-3 and a methoxy group addition on C-4, as revealed by the SAR analysis. In this set, compound 68 was the most potent selective inhibitor (IC₅₀ = 17 nM). This compound also showed outstanding low nanomolar antiproliferative activity against solid and hematological malignancies [106].

A series of phenylsulfofuroxan-based hydroxamates that inhibit HDAC and donate NO was designed. Compound 69, the most effective hybrid, exhibited potent HDAC6 activity (IC₅₀ = 7.4 nM); additional research revealed that this compound showed more oral anticancer effectiveness than SAHA in vivo and generated a considerably more significant apoptotic effect and G1 phase arrest in HeLa cells [107].

Compound 70 was the most selective HDAC6 inhibitor (IC₅₀ = 20 nM) among a series of phenyl-pyrazole-containing HDACis developed and synthesized. Analysis of the SAR revealed that placing the linker group at the 1′ position of pyrazol provided the most outstanding selectivity. Furthermore, it was six times more effective than vorinostat in HepG2 cells [108].

Carbazole-based hydroxamic acid derivatives with an aralkyl linker were developed. Compound 71 had the most effective HDAC6 inhibitory action (IC₅₀ = 15 nM). According to the subsequent SAR, substitutions at the 6-, 7-, 8-, and 9-positions of the cap group did not improve their selectivity despite the advantages of the presence of aromatic functionalities introduced at the 2-position [109].

Compound 72, with an IC₅₀ of 300 nM, is a reported HDAC6 inhibitor. According to SAR studies, thiazole derivatives were considerably less potent and selective than oxazole-containing structures, although para-position substitutions were more selective. Furthermore, compound 73 (4-bromophenyl substituted oxazole hydroxamate) was the series’ most potent analog (IC₅₀ = 59 nM) [110]. The first HDAC6-selective inhibitors that reduce melanoma cell proliferation were prepared by Bergman et al. According to SAR analysis, compounds with a branched linker group displayed improved HDAC6 selectivity and potency. Compound 74 has low nanomolar inhibitory efficacy against HDAC6 (IC₅₀ = 5.02 nM) and 600-fold selectivity relative to HDAC1 inhibition (IC₅₀ = 3.02 μM) [111].

Compound 75 was the most effective HDAC6 inhibitor amongst a set of selective HDAC6 inhibitors utilizing peptide-based branched cap groups, which exhibited a nanomolar inhibitory activity (IC₅₀ = 1.59 nM) [112].
A series of HDAC6 selective inhibitors utilizing *in silico* simulations was developed. The most potent compound 76 represents a new class of selective HDAC6 inhibitors (IC\textsubscript{50} = 0.4 nM) with 100-1000-fold selectivity over other HDACs isozymes and sub-nanomolar HDAC6 inhibitory activity [113].

Compound 77 was discovered to be a selective HDAC6 inhibitor with low nanomolar efficacy (IC\textsubscript{50} = 5.92 nM). It exhibits little cytotoxicity against non-cancerous cells and an excellent safety profile. It is very effective against several blood cancer cell lines [114].

A 158-fold HDAC6 selectivity over other HDACs was exhibited by compound 78. The addition of a 3-pyridylmethyl group to the cap results in attaining new selectivity & affinity interactions in the active site of HDAC6 (IC\textsubscript{50} = 2 nM), leading to a considerable increase in activity, as determined by SAR [115].

Compound 79 (HDAC6 inhibitor, IC\textsubscript{50} = 8.5 nM) was more effective in treating T-cell prolymphocytic leukemia than other hematological malignancies. It exhibits a favorable therapeutic efficacy in non-transformed cell lines [116].

Many HDAC6 inhibitors based on indirubin moiety were introduced. Compound 80 is an effective, selective HDAC6 inhibitor (IC\textsubscript{50} = 7 nM) with 29-fold for HDAC6 isoform selectivity over the HDAC2 isoform (IC\textsubscript{50} = 205 nM) [117].

Compound 81 was amongst a group of selective HDAC6 inhibitors developed by Guo *et al.* It exhibits 141-fold selectivity over HDAC1, excellent HDAC6 selectivity (IC\textsubscript{50} = 1.8 nM) & low nanomolar potency [118].

Rebing and colleagues designed compound 82 (IC\textsubscript{50} =30 nM). The tetrazole ring strengthens the compound’s stiffness, as revealed by SAR research. In addition, it could considerably boost the apoptosis-inducing actions of the proteasome inhibitor bortezomib. Its combination with epirubicin and daunorubicin significantly increased cytotoxicity, as demonstrated by high-throughput drug screening [119].

Chen *et al.* produced a variety of new 2,5-diketopiperazine (DKP) compounds as particular HDAC6 inhibitors. Most of them exhibited low nanomolar activity.
against HDAC6. Compound 83 (IC\textsubscript{50} = 0.73 nM) is the most potent analog with superior HDAC6 selectivity relative to other derivatives [120].

The most efficient and selective HDAC6 inhibitor is compound 84 (IC\textsubscript{50} = 48.5 nM), which is one of a group of HDAC6 selective inhibitors found by Saraswati et al. This compound could increase tubulin acetylation without significantly affecting the histone acetylation status, according to studies utilizing Western blotting [121].

Compound 85, a selective HDAC6 inhibitor (IC\textsubscript{50} = 4.6 nM) with a phenothiazine scaffold and hydroxamic acid as ZBG, was reported as it can stimulate neurite development without damage to nerve cells [122].

Among various triazole-based HDAC6 inhibitors, compound 86 had 128-fold selectivity over HDAC1 and the highest inhibitory activity against HDAC6 (IC\textsubscript{50} = 30.6 nM). It might dose-dependently enhance the amount of acetylated \(\alpha\)-tubulin but did not affect the acetylated histone H3 in MGC803 cells [123].

Compound 87, with aryl-hydroxamate pharmacophore designed by Tseng and colleagues, it exhibited excellent HDAC6 selectivity in the nanomolar range (IC\textsubscript{50} = 26 nM) [124]. A set of urea-based cinnamyl hydroxamate compounds as potential anticancer HDAC6 inhibitors was developed. Compound 88 exhibited potent, selective HDAC6 inhibition (IC\textsubscript{50} = 8.1 nM) and potent antiproliferative activity against hematological malignancies [125].

A memantine-based series of compounds as HDAC6 selective inhibitors were reported; the memantine cap group has a brain penetration capability. Compound 89 is this series's most potent selective HDAC6 inhibitor at nanomolar dosage (IC\textsubscript{50} = 5.42 nM), exhibiting significant cell growth-inhibiting actions against glioma cell lines [126].

2.2.2.2. HDAC10 selective inhibitors

In stage 4 neuroblastoma, high HDAC10 expression is associated with poor overall patient survival [127]. Low HDAC10 expression is related to poor outcomes in lung cancer and is also regarded as a sign of poor prognosis in gastric cancer [128]. Patrik et al. developed the hydroxamate-based compounds 90 & 91, which were evaluated for their selectivity in AML cells harboring the FLT3-ITD oncogene. They were demonstrated to be nanomolar HDAC10 inhibitors with good selectivity over HDAC6 (IC\textsubscript{50} = 20, 58 nM, respectively) and negligible effect on class I HDACs. Nonetheless, they benefit from not harming normal human kidney cells [129].

High-potent selective HDAC10 inhibitors were synthesized. Compounds 92 & 93 have high selectivity against class I HDACs, good selectivity against HDAC6,
and excellent potency against HDAC10 (IC\textsubscript{50} = 8.3, 8.4 nM, respectively).

![Chemical structures](image)

These compounds with a strategically positioned amino group displayed enhanced hydrogen bonding with the gatekeeper residue Glu272 and Glu22 of HDAC10 isozyme [130].

2.3. Class IV Selective Inhibitors

In malignancies such as renal pelvis urothelial carcinoma, HCC, and breast cancer, HDAC11 is overexpressed [131]. Two potent HDAC11 inhibitors were synthesized, compounds 94 (IC\textsubscript{50} = 0.91 μM) and 95 (IC\textsubscript{50} = 0.83 μM), active in cells and inhibited HDAC11 substrate without inhibiting other HDACs. Regarding compound 95, they investigated the necessity of carbohydrazide, a zinc chelating group, for HDAC11 suppression. Substituting an amide for the carbohydrazide eliminates the compound selectivity toward HDAC11 [132]. Martin et al. identified N-hydroxy-2-arylisoindoline-4-carboxamides as practical and specific HDAC11 inhibitors. Compound 96 potently inhibits HDAC11 isozyme (IC\textsubscript{50} = 3 nM) at nanomolar concentrations [133].

Conclusion

HDACs are crucial for controlling chromatin structure and gene expression, making them attractive targets for cancer therapy. While pan HDACis have shown efficacy against certain cancers, their utilization is restricted by adverse effects. Selective HDACis development offers a promising alternative, as specific HDAC isoforms are associated with different types of cancer. By targeting these isoforms, selective HDACis can provide more precise therapeutic effects with reduced side effects. Several selective HDACis have exhibited excellent potency and demonstrated selective cytotoxicity against cancer cells while sparing normal cells. These findings highlight the potential of selective HDACis in improving cancer treatment outcomes. Further research and development of isoform selective HDACis are warranted to enhance their therapeutic index and expand their application in cancer therapies.

Ethical consideration:

All the participants in this study gave their informed permission.

Conflicts of Interest

No conflicts of interest are disclosed.

Abbreviation List

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDACs</td>
<td>Histone deacetylases</td>
</tr>
<tr>
<td>HDACis</td>
<td>Histone deacetylase inhibitors</td>
</tr>
<tr>
<td>IC\textsubscript{50}</td>
<td>Half-maximal inhibitory concentration</td>
</tr>
<tr>
<td>NAD+</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>Zn2+</td>
<td>Zinc</td>
</tr>
<tr>
<td>SIRT</td>
<td>Sirtuin</td>
</tr>
<tr>
<td>ZBG</td>
<td>Zinc binding group</td>
</tr>
<tr>
<td>PTCL</td>
<td>Peripheral T-cell lymphoma</td>
</tr>
<tr>
<td>SAHA</td>
<td>Suberoylanilide hydroxamic acid</td>
</tr>
</tbody>
</table>
HCCs Human hepatocellular carcinoma
μM Micrometer
nM Nanometer
α Alpha
STAT3 Signal transducer and activator of transcription 3
hERG Human ether-a-go-go-related gene
DLBCL Diffuse large B cell lymphoma
PDAC Pancreatic ductal adenocarcinoma
MTT assay 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide
NF-κB Nuclear factor kappa B
HIV Human immunodeficiency virus
GI₅₀ Growth inhibition of 50% of cells.
HEK293 Human Embryonic Kidney
SAR Structure-activity relationship
CDK1 Cyclin-dependent kinase 1
HS27 Human skin fibroblast cell line
CC₅₀ Half maximal cytotoxic concentration
WBCs White blood cells
GSH Glutathione
ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
TSA Trichostatin A
DKP Diketopiperazine

References
Molecular docking study reveals the Hybrid Inhibitors.

[3,4,5]

Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br J Cancer 2008, 98 (3), 604-10.

Pramanik, S. D.; Kumar Halder, A.; Mukherjee, U.; Kumar, D.; Dey, Y. N.; R, M., Potential of histone deacetylase inhibitors in the control...

Selective Inhibitors of Histone Deacetylase 8 using Click Chemistry to Reality Behind Anticancer Drug Discovery.

Abreu, C.; Martinez, E.; Berthézene, P.; Cadra, S.; Le Treut, Y. P.; Gronemeyer, H.; Altucci, L., Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC
Duan, W.; Li, J.; Inks, E. S.; Cheu, C. J.; Jia, Y.; Chu, X.; Li, X.; Xu, W.; Zhang, Y., Design, synthesis, and antitumor evaluation of novel

[128] Osada, H.; Tatematsu, Y.; Saito, H.; Yatabe, Y.; Mitsudomi, T.; Takahashi, T., Reduced expression of class II histone deacetylase genes is

